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ABSTRACT: Sensitive, rapid, and meaningful diagnostic tools for prostate cancer (PC) screening are urgently needed. Paper spray
ionization mass spectrometry (PSI-MS) is an emerging rapid technology for detecting biomarker and disease diagnoses. Due to lack
of chromatography and difficulties in employing tandem MS, PSI-MS-based untargeted metabolomics often suffers from increased
ion suppression and subsequent feature detection, affecting chemometric methods for disease classification. This study first evaluated
the data-driven soft independent modeling of class analogy (DD-SIMCA) model to analyze PSI-MS-based global metabolomics of a
urine data matrix to classify PC. The efficiency of DD-SIMCA was analyzed based on the sensitivity and specificity parameters that
showed 100% correct classification of the training set, based on only PC and test set samples, based on normal and PC. This
analytical methodology is easy to interpret and efficient and does not require any prior information from the healthy individual. This
new application of DD-SIMCA in PSI-MS-based metabolomics for PC disease classification could also be extended to other diseases
and opens a rapid strategy to discriminate against health problems.

■ INTRODUCTION

Prostate cancer (PC) is the second most commonly diagnosed
cancer in men worldwide, with an estimated 248,530 new cases
and 34,130 new deaths in 2021.1 The main barrier to reduce
PC mortality is the early diagnosis of disease.2 The current
most used clinical tests applied for PC diagnosis are the
prostate specific antigen (PSA) blood test and digital rectal
examination (DRE).2 However, these tests present numerous
drawbacks.2 The PSA blood test has low specificity, presenting
a high rate of false positives or false negatives, and biopsies are
an unpleasant procedure for patient which can produce several
health complications such as infections, incontinence, and
erectile dysfunction.2,3 In addition, current biopsies frequently
miss cancer detection due to tumor heterogeneity.4 Thus, the
development of efficient technology using a noninvasive
approach for rapid and reproducible PC diagnosis is an urgent
clinical need.

The emerging field of metabolomics such as liquid biopsies,
child malnutrition, and COVID-19, in which a large number of
small molecules (metabolites) from biological organisms are
detected in both a qualitative and quantitative manner in a
single step, has immense potential for early diagnosis of many
diseases.5−8 Metabolic profiling provides an overview of the
cellular and physiological status about an individual being
highly recommended in clinical diagnostics.9 Metabolomics
has been increasingly used for diagnosis of several diseases in
humans, such as cancer,10−13 COVID-19,14,15 Alzheimer’s,16

Received: September 14, 2021
Accepted: January 7, 2022

Technical Notepubs.acs.org/ac

© XXXX American Chemical Society
A

https://doi.org/10.1021/acs.analchem.1c04004
Anal. Chem. XXXX, XXX, XXX−XXX

D
ow

nl
oa

de
d 

vi
a 

U
N

IV
 T

E
X

A
S 

M
D

 A
N

D
E

R
SO

N
 C

A
N

C
E

R
 o

n 
Ja

nu
ar

y 
21

, 2
02

2 
at

 1
7:

22
:5

4 
(U

T
C

).
Se

e 
ht

tp
s:

//p
ub

s.
ac

s.
or

g/
sh

ar
in

gg
ui

de
lin

es
 f

or
 o

pt
io

ns
 o

n 
ho

w
 to

 le
gi

tim
at

el
y 

sh
ar

e 
pu

bl
is

he
d 

ar
tic

le
s.

https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Frederico+G.+Pinto"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Iqbal+Mahmud"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Vanessa+Y.+Rubio"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Ademar+Domingos+Viagem+Ma%CC%81quina"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Ani%CC%81zia+Fausta+Furtado+Durans"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Ani%CC%81zia+Fausta+Furtado+Durans"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Waldomiro+Borges+Neto"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Timothy+J.+Garrett"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/showCitFormats?doi=10.1021/acs.analchem.1c04004&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.analchem.1c04004?ref=pdf
https://pubs.acs.org/doi/10.1021/acs.analchem.1c04004?goto=articleMetrics&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.analchem.1c04004?goto=recommendations&?ref=pdf
https://pubs.acs.org/doi/10.1021/acs.analchem.1c04004?fig=tgr1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.analchem.1c04004?fig=tgr1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.analchem.1c04004?fig=tgr1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.analchem.1c04004?fig=tgr1&ref=pdf
pubs.acs.org/ac?ref=pdf
https://pubs.acs.org?ref=pdf
https://pubs.acs.org?ref=pdf
https://doi.org/10.1021/acs.analchem.1c04004?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://pubs.acs.org/ac?ref=pdf
https://pubs.acs.org/ac?ref=pdf


Parkinson’s,17,18 diabetes,19 child malnutrition,6 fatigue,
depression, and pain.20

Liquid chromatography−mass spectrometry (LC−MS) is
one of the fastest-growing techniques for metabolomics
analysis. Although LC−MS is an excellent match, it presents
some drawbacks for large-scale metabolomics projects such as
time-consuming analysis (20−30 min per injection), laborious
sample preparation, use of a large amount of solvent over the
acquisition time, and potential high cost,21 except for the
microflow-based LC-MS system as an instance that minimizes
a significant amount of sample and solvent consumption.22

Thus, to overcome the drawbacks to apply the mass
spectrometry-based metabolomics approach for large-scale
studies and then establish the MS technique as a tool for
clinical tests used for disease diagnosis, paper spray ionization-
mass spectrometry (PSI-MS) appears to be a promising
alternative.5

PSI is an ambient MS ionization method that produces gas-
phase ions in the ambient air, removing chromatographic
separation and minimizing prior sample preparation.5 PSI-MS
promotes a simple straightforward sample introduction and
analysis with low cost and high speed. In this approach, the
sample is placed directly onto a rigid sheet of chromatography
paper, allowed to dry, and then analyzed by MS after
application of a designated spray solvent for elution and a
high voltage for ionization.5 In addition, once the sample dries
upon initial application onto the paper, the sample does not
require any special handling or refrigeration. Clinical
applications of PSI-MS are at an early stage but show promise
as a technique for disease diagnosis.5,23 PSI-MS has the
potential to be used remotely as a small volume of a liquid
sample can be applied onto a simple cellulose filter paper and
then shipped for analysis to a centralized location equipped
with an MS for rapid diagnosis of a given disease.24 Storage of
samples as dried spots improves sample stability at room
temperature in many cases.25 PSI-MS has been shown to be a
high-throughput and suitable technique for measurement of
many clinical analytes in biofluids in less than 1 min of
acquisition time. This makes it an optimal tool for integration
into a rapid metabolomic profiling assay.
Several studies highlight the use of chemometric methods in

metabolomic analyses. Raja et al.26 conducted a metabolomics
study based on 1H NMR for cancer targeting and metabolic
engineering, using traditional chemometric methods such as
principal component analysis (PC) and partial least-squares
discriminant analysis (PLS-DA) to examine metabolic differ-
ences. Deev et al.27 developed prostate cancer screening
methodologies using chemometric processing of GC−MS
profiles obtained in the headspace above urine samples, where
they applied the PC for exploratory data analysis, the methods
k-nearest neighbors (KNN), and the PLS-DA to make the
models allowing attribution of a urine sample to the particular
class. Drivelos et al.28 developed methodologies for identifying
the geographical origin and botanical type honey authentica-
tion through elemental metabolomics via chemometrics.
However, the methods used by these authors have low
efficiency when they are used to discriminate samples whose
information is not incorporated in the calibration process, as
demonstrated in detail by Rodionova et al., in 2016.29 Thus,
the applicability of these methods for noninvasive diagnostic of
prostate cancer using urine liquid biopsy is reduced due to the
existence of a variety of unknown samples.

As an alternative, the modeling of classes or classifying
methods30,31 are widely used for several purposes32−35 due to
the following advantages: for their calibration, only information
from the samples of the class of interest is necessary; have good
efficiency in the classification of unknown samples; and are
easily interpreted. The data driven soft independent modeling
of class analogy (DD-SIMCA) model is an example of these
methods that is developed using only information from
samples of the class of interest to later detect whether the
information from a new sample resembles this class or not.30,31

DD-SIMCA performs modeling of each class by using principal
components (PCs) of the data for each class. For the unknown
sample classifications, DD-SIMCA uses a collection of the
individual class models where PLS-DA modeling is based on a
single global model.30,31 Moreover, DD-SIMCA decomposes
the data by principal component analysis (PCA) to calculate
the score distances and orthogonal distances for each object in
order to establish two tolerance thresholds: the acceptance
area for a given significance level and the outliers area.30,31 Due
to its functionality, DD-SIMCA is used as an authentication
technique for various purposes, such as for the detection of
melamine and sucrose as adulterants in powdered milk;36 for
monitoring the adulteration of the B10 blend of diesel and
crambe biodiesel;35 for authentication and identification of
adulterants in virgin coconut oil;37 and for detecting the
presence of adulterants and confirming the provenance of
edible bird’s nests produced in Malaysia.38

Previously, we reported discrimination of PC from normal
by PLS-DA modeling based on their PSI spectra acquired by
PSI-MS.5 However, there are no reports in the literature that
use the DD-SIMCA method for PSI-MS-based untargeted
metabolomics. Herein, we report DD-SIMCA analysis of the
PSI spectra obtained for PC versus normal urine samples. The
DD-SIMCA classification model was evaluated using 80 urine
samples from 40 PC and 40 healthy individuals. The efficiency
of this methodology was analyzed based on the sensitivity and
specificity parameters that showed 100% correct classification
of the training and test set samples. Based on our under-
standing between the classification methods such as DD-
SIMCA and PLS-DA, we suggest that DD-SIMCA can be an
alternative approach of PLS-DA in the case of analyzing
multiple sample classes including unknown samples.

■ EXPERIMENTAL SECTION
Materials. Acetonitrile (ACN), methanol (MeOH), water

(H2O), and formic acid (FA) solvents were Optima LC/MS
grade solvents purchased from Thermo Fisher Scientific
(Fairlawn, NJ).

Urine Samples. Urine samples were obtained from the
Biospecimen Core of the SPORE network in Prostate Cancer
at Northwestern University (P50 CA180995). Urine samples
from 40 healthy individuals with no prior medical history of
cancer (NPC) were obtained from the Life Study (University
of Florida, Gainesville, FL). The institutional review board
(IRB) of the Florida Hospital approved sample use.

Raw Urine Direct Analysis by PSI-HRMS. Raw urine
samples were directly analyzed using PSI-HRMS as previously
described.5 Briefly, 15 μL of raw urine was deposited onto
precut triangular paper Velox cartridges obtained from
Prosolia, Inc. (Indianapolis, IN). A 3D-printed bracing device
was used (Prosolia, Inc.) for reproducibility in sample
dispensing and positioning. PSI cartridges were loaded into
the Prosolia Velox 360 PSI automated unit for MS analysis. A
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volume of 80 μL of 3:7 MeOH:H2O containing 0.1% FA (v/v/
v) was used as the wetting and spray solvent. Pooled samples
from each group were used to check reproducibility.
PSI-HRMS Analysis. PSI-HRMS mass spectra were

obtained using a Thermo Scientific Q Exactive MS. Data
acquisition was performed in full scan mode (positive
ionization mode) with a mass range of 70−1,000 m/z at
140,000 mass resolution. Other PSI-HRMS instrument
parameters for data acquisition were used as previously
described.5,39,40 Metabolomics data files were converted to
mzXML file format using RawConverter.41 Mzmine 2.0 was
employed for peak picking and feature alignment.42 Non-
detected species with zero intensity were replaced with half of
the minimum value of all features detected.42 Data were
filtered by blank feature filtration (BFF) to remove features
with ≥10% signal intensity contribution from the background
signal.
Chemometrics Analysis. The chemometric analyses

involving DD-SIMCA for modeling paper spray ionization
mass spectrometry data were performed with MATLAB
software version R2017a (Mathworks, Inc.) using a graphical
interface developed by Zontov et al.31 To perform the
multivariate procedures, the paper spray ionization mass
spectra data were organized in an ordered array of rows and
columns, where each row corresponds to one sample “i” and
each column corresponds to one variable “j”, in which i =
1,2,3,...,80 (The first 40 samples are normal, and the remaining
40 are PC samples.) and j = 1,2,3,...,783 (number of features
after BFF). Data from 25 samples of interest class (PC) are
extracted from this matrix to constitute the training set, called
matrix X. The data were preprocessed using sum normal-
ization, that is, dividing each region of the spectrum (bin) by
the respective sum total of the spectrum integration area,
according to eq 143

X
X

X
ij

ij
ij

j
j

1
(bin nor) =

∑ | |_
= (1)

where Xij(bin_nor) is bin normalized by the sum, Xij is the
original bin, and ∑j=1

783Xij is the sum of integration areas for
each sample column.
Construction of the Data Driven Soft Independent

Modeling of Class Analogy (DD-SIMCA) Model. The DD-
SIMCA model construction procedures are well developed in
the literature.29,44−49 The procedure consists of two steps:
First, the (i × j) data matrix X is decomposed by the principal
component analysis (PCA) according to eq 231

X TP Et= + (2)

where T = {tia} is the [(i × A), i.e., (40 × A)] score matrix, P =
{pia} is the [(j × A), i.e., (783 × A)] loadings matrix, E = {eij}
is the [(i × j), i.e., (80 × 783)] matrix of residuals, and A is the
number of principal components.
In the second step, for each object I = 1,...,I from the training

set, two distances are calculated according to eq 3. They are
score distances (SD), hi, and the orthogonal distance (OD),
υi
45

h t t
t

eT T( ) ,i i
t

i
i

t
ia

a
i

j

J

ij
t 1

1

2

1

2∑ ∑
λ

υ= = =−

= = (3)

where λa, a = 1,..,A are the diagonal elements of matrix TtT =
Λ = diag(λ1,...,λA).

SD represents the position of a sample within the score
space, while OD characterizes a sample distance to the score
space. DD-SIMCA adds the possibility of estimation of the
data-driven distribution parameters, and it was shown that
distributions of both distances are well approximated by the
scaled chi-squared distribution,45 as follows

N
h
h

N N N( ) ( )h h
0

2

0

2αχ υ
υ

αχυ υ
(4)

where υ0 and h0 are the scaling factors, and Nh and Nv are the
numbers of the degrees of freedom (DoF). These parameters
are considered unknown and estimated using the method of
moments (MM) as described previously.45 The statistics c,
called the total distance, is calculated by the following:50

c N
h
h

N N N( )h h
0 0

2υ
υ

χ= + ∝ +υ υ
(5)

It is used to generate the decision rules on the acceptance
area for a given value. Any decision rule is determined by an
inequality eq 6. The third step defines the acceptance area or
thresholds for the target class (samples of interest class, in this
case PC). Given the type I error, α, the acceptance area is
determined as the following47

c c ( )crit α≤ (6)

where

c N N(1 , )crit h
2χ α= − + υ

−
(7)

is the (1−α) quantile of the chi-squared distribution with Nh +
Nυ.

50 To calculate the type II error, β, we should assume that
an alternative class is available, as follows47

l
moo
noo

|
}oo
~oo

Pr N N s
c
c

( , )h
crit2

0
β χ= ′ + <

′υ
(8)

where ccrit is defined in eq 7, and χ′2 is the noncentral chi-
squared distribution. Parameters c0′ and s are found on the type
II error in the SIMCA method.47

After this step, the model is ready for classification of new
samples and can be represented by an acceptance area in the
orthogonal (h/h0) against the score distance (v/v0) (accept-
ance plot) defined for the given α value. The α value specifies a
type I error, i.e., a share of the false-negative decisions. Each
sample from the training set is characterized by its position in
the acceptance plot and has a status of either a “regular”
sample, i.e., a sample attributed to the target class, or an
“extreme” sample, which is located out of the acceptance area
and is determined to be an alien (a nonmember). Besides that,
a second cutoff level is determined to be used as the outlier
border constructed for the given α value. This value specifies
the probability that at least one regular object from the data set
will be erroneously considered as an outlier. The outlier area
depends on the size of a training set, I. For a specific α value,
the greater I is, the farther the outlier area will be. For a
moderate data set, a common value of α is equal to 0.05 or
0.01.31,44

A special extreme plot is also created to demonstrate the
dependence of the observed number of the extreme samples
versus the theoretically expected values, calculated as n = αI.50

This dependence is shown in the plot together with the
tolerance limits calculated according to eq 9.31 The extreme
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plot helps to analyze the quality of the classification model for
the chosen number of principal components:50

t n I n n I2 (1 ) 2 (1 / )α α α= ± − = ± −α (9)

Evaluation of the DD-SIMCA Model. The efficiency of
the model is analyzed based on the sensitivity and specificity
parameters. Generally, sensitivity is determined for the training
data set by eq 10 but can also be determined for the test data
set if this set is built only with new target class samples.
Specificity is determined for the test data set by eq 11, when
this set is constructed with samples of the target class ‘regular’
and alien class ‘external objects’.31 Thus, samples correctly
classified in their respective classes are considered true positive
(TP) samples.

Sensitivity
Samples Extremes

Samples
100%=

−
×

(10)

Specificity
TP samples

Test Samples
100%= ×

(11)

■ RESULTS AND DISCUSSION
PSI-HRMS Spectra of Urine Samples Show Difference

between Normal and PC Individuals. Typical PSI-HRMS
spectra of urine samples from normal and PC individuals
acquired are presented in Figure 1. The typical PSI-HRMS
molecular profiling between normal and PC urine groups
showed a considerable difference. Figure 1 displays the average
spectral comparison (m/z 70−400 region) with the presence
of peaks related to low-molecular-weight species that are
biologically relevant. Some highly differentiated metabolites or
features such as creatinine ([M + H]+ adduct, m/z 114.0667)
or ([2M + H]+ adduct, m/z 227.1249), carnitine ([M + H]+

adduct, m/z 144.1018), TMAO ([2M + H]+ adduct, m/z
151.1441), and tryptophan ([M + H]+ adduct, m/z 205.0977)

are shown in the urine spectra (Figure 1). Metabolites were
putatively identified based on m/z exact mass (molecular
weight tolerance of 5 ppm) matching to the HMDB database
(https://hmdb.ca/spectra/ms/search)51 in accordance with
the metabolomics standards initiative.52

To better understand the variability of a metabolite or
feature during data collection, we showed a most differentiated
metabolite such as creatinine as an example and observed that
the level of creatinine is significantly intense in PC samples
which is inconsistent with the average spectral comparison
(Figure 1). These observations suggest that PSI-MS-based
global metabolomics may delineate disease differentiation.

DD-SIMCA Modeling with the Training Set. We
observed hundreds of metabolic features in PSI-MS-based
global urine metabolomics which included both known and
unknown molecules. However, the challenges in PSI-MS-based
metabolomics are to properly classify groups associated with
disease. Here, we leveraged the DD-SIMCA method for the
first time in PSI-MS-based metabolomics to demonstrate
correct classification of PC alone or from normal individuals.
The DD-SIMCA model was developed using 4 principal
components. This number of principal components showed
the best results, explaining 93.96% of the total variance of
training data with ∝ = 0.01, as shown in Table 1. The
sensitivity of the model in training was 1, which is equivalent to
saying that no sample of the target class (PC) was classified as
extreme or as outliers. The sum of the normalized score
distance and orthogonal distance defined the type of
acceptance area in ≪chi-squared≫, i.e., a triangular area

Figure 1. Stacked group averaged spectra for prostate cancer (PC) and healthy individuals as control (CTL). We show m/z 70−400 where the
most intense and populated peak differences were observed between PC and CTL. The red line indicates PC average spectra (n = 40), and the
green line indicates CTL spectra (n = 40). Annotated metabolites/features and the corresponding adduct are shown along with the respective peak.
A bar graph with a whisker plot shows the creatinine level as an example of a metabolite across the scans as shown in the insets. The p-value was
calculated using Student’s t test and two-tailed unequal variance.

Table 1. DD-SIMCA Modeling Result for the Training Set
of Samples

alpha
principal

component
explained
variance samples extremes outlier sensitivity

0.01 4 93.96% 25 0 0 1
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(Figure 2). This data shows the PC sample classification
obtained by the DD-SIMCA model, where it can be observed
that no PC sample was found in the extreme’s area (space
between the green and red lines) or in the outlier’s area (space
above the red line). This data suggests that all PC samples
were classified correctly because they are within the acceptance
area, delimited by the green line with ∝ = 0.01.
The verification of outlier samples in the training set was

based on the analysis of the dependence on the observed
number of the extreme samples versus the theoretically
expected values, presented in the special extreme plot (Figure
3). In this data, it is observed that all samples fell within the
tolerance area (shown in vertical lines), demonstrating that the
training set does not contain outliers based on the DD-SIMCA
model.
The evaluation of the model was performed with a test set

composed of samples of target class (PC) and urine samples
from 40 healthy individuals with no prior medical history of

cancer (NPC). The results are presented in Table 2. The
prediction specificity was 1, which suggests that all samples in

the test set were correctly classified into their respective classes.
In accordance with Table 1, further analysis using the
acceptance plot showed correct classification of PC (Figure 4).
The acceptance plot shows the test set sample classification,

where it can be observed that all PC samples are within the
acceptance area, representing a correct classification. The urine
samples of NPC were correctly classified as alien because they
are outside the acceptance area (green line), indicating that
there are differences between spectral profiles of these samples

Figure 2. Acceptance plot of samples with prostate cancer by the DD-SIMCA model in the training process. The acceptance area is the threshold
for ∝ = 0.05, and the outlier delimitation is the limit for ∝ = 0.01.

Figure 3. Outlier verification plot in samples with prostate cancer by the DD-SIMCA model in the training process.

Table 2. Results of the Evaluation of the Test Set by the
DD-SIMCA Model

alpha principal components samples external objects specificity

0.01 4 55 40 1
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with the target class (PC) samples (Figure 4). Altogether, DD-
SIMCA appears to be a robust model in PSI-MS-based
metabolomics for accurate classification of a disease such as
PC.

■ CONCLUSION

The application of paper spray ionization mass spectrometry
associated with the DD-SIMCA chemometric method allowed
the development of a classification methodology for a
noninvasive diagnosis of prostate cancer using only relevant
information from the samples of interest (PC). The efficiency
of this methodology was analyzed based on the sensitivity and
specificity parameters that showed 100% correct classification
of the training and test set samples. This analytical method-
ology is easy to interpret, efficient, and viable, because for its
development, it does not require prior information from the
urine samples of healthy individuals without a previous medical
history of cancer.
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F.; Joshi, P.; Valerio, F.; Rivera, I.; Patel, V.; Pavlovich, C. P.; Garrett,
T. J.; Schroth, G. P.; Sun, Y.; Perera, R. J. Sci. Rep. 2020, 10 (1), 1−
17.
(11) Lynch Kelly, D.; Farharfar, N.; Starkweather, A.; Garrett, T. J.;
Yao, Y.; Wingard, J. R.; Mahmud, I.; Menzies, V.; Patel, P.; Alabasi, K.
M.; Lyon, D. Biol. Blood Marrow Transplant. 2020, 26, 1803.
(12) Mahmud, I.; Tian, G.; Wang, J.; Lewis, J.; Waddell, A.; Lydon,
M. L.; Zhao, L. Y.; Li, J.-L.; Purayil, H. T.; Huo, Z.; Daaka, Y.; Garrett,
T. J.; Liao, D. DAXX-SREBP Axis Promotes Oncogenic Lipogenesis
and Tumorigenesis. 2021, 2020.12.31.424997. https://www.biorxiv.
org/content/10.1101/2020.12.31.424997v1 (accessed 2022-01-14),
DOI: 10.1101/2020.12.31.424997.
(13) Tan, S. K.; Mahmud, I.; Fontanesi, F.; Puchowicz, M.;
Neumann, C. K. A.; Griswold, A. J.; Patel, R.; Dispagna, M.; Ahmed,
H. H.; Gonzalgo, M. L.; Brown, J. M.; Garrett, T. J.; Welford, S. M.
Cancer Discovery 2021, 11 (8), 2072−2093.
(14) Garrett, T. J.; Coatsworth, H.; Mahmud, I.; Hamerly, T.;
Stephenson, C. J.; Yazd, H. S.; Ayers, J.; Miller, M. R.; Lednicky, J. A.;
Dinglasan, R. R. Niclosamide Reverses SARS-CoV-2 Control of
Lipophagy. 2021, 2021.07.11.451951. https://www.biorxiv.org/
content/10.1101/2021.07.11.451951v1 (accessed 2022-01-14),
DOI: 10.1101/2021.07.11.451951.
(15) Sindelar, M.; Stancliffe, E.; Schwaiger-Haber, M.; Anbukumar,
D. S.; Albrecht, R. A.; Liu, W.-C.; Travis, K. A.; García-Sastre, A.;
Shriver, L. P.; Patti, G. J. Longitudinal Metabolomics of Human
Plasma Reveals Robust Prognostic Markers of COVID-19 Disease
Severity. medRxiv. 2021, 2021.02.05.21251173. https://www.medrxiv.
org/content/10.1101/2021.02.05.21251173v1 (accessed 2022-01-
14), DOI: 10.1101/2021.02.05.21251173.
(16) Wilkins, J. M.; Trushina, E. Front. Neurol. 2018, 8, 719.
(17) Gill, E. L.; Koelmel, J. P.; Yost, R. A.; Okun, M. S.; Vedam-Mai,
V.; Garrett, T. J. Anal. Chem. 2018, 90 (5), 2979−2986.
(18) Gill, E. L.; Koelmel, J. P.; Meke, L.; Yost, R. A.; Garrett, T. J.;
Okun, M. S.; Flores, C.; Vedam-Mai, V. J. Proteome Res. 2020, 19 (1),
424−431.
(19) O’Kell, A. L.; Garrett, T. J.; Wasserfall, C.; Atkinson, M. A. Sci.
Rep. 2017, 7 (1), 9467.
(20) Menzies, V.; Starkweather, A.; Yao, Y.; Kelly, D. L.; Garrett, T.
J.; Yang, G.; Booker, S.; Swift-Scanlan, T.; Mahmud, I.; Lyon, D. E.
Biol. Res. Nurs. 2021, 23, 119.
(21) Pinto, F. G.; Mahmud, I.; Harmon, T. A.; Rubio, V. Y.; Garrett,
T. J. J. Proteome Res. 2020, 19, 2080.
(22) Wang, H.; Bennett, P. Bioanalysis 2013, 5 (10), 1249−1267.
(23) Wang, H.; Manicke, N. E.; Yang, Q.; Zheng, L.; Shi, R.; Cooks,
R. G.; Ouyang, Z. Anal. Chem. 2011, 83 (4), 1197−1201.
(24) Manicke, N. E.; Bills, B. J.; Zhang, C. Bioanalysis 2016, 8 (6),
589−606.
(25) Frey, B. S.; Damon, D. E.; Badu-Tawiah, A. K. Mass Spectrom.
Rev. 2020, 39 (4), 336−370.
(26) Raja, G.; Jung, Y.; Jung, S. H.; Kim, T. J. Process Biochem. 2020,
99, 112−122.
(27) Deev, V.; Solovieva, S.; Andreev, E.; Protoshchak, V.;
Karpushchenko, E.; Sleptsov, A.; Kartsova, L.; Bessonova, E.; Legin,
A.; Kirsanov, D. J. Chromatogr. B Analyt. Technol. Biomed. Life. Sci.
2020, 1155, 122298.
(28) Drivelos, S. A.; Danezis, G. P.; Halagarda, M.; Popek, S.;
Georgiou, C. A. Food Chem. 2021, 338, 127936.
(29) Rodionova, O. Y.; Titova, A. V.; Pomerantsev, A. L. TrAC -
Trends in Analytical Chemistry 2016, 78, 17−22.
(30) Rodionova, O. Ye; Titova, A. V.; Pomerantsev, A. L. TrAC
Trends Anal. Chem. 2016, 78, 17−22.
(31) Zontov, Y. V.; Rodionova, O. Ye; Kucheryavskiy, S. V.;
Pomerantsev, A. L. Chemom. Intell. Lab. Syst. 2017, 167, 23−28.
(32) de Santana, F. B.; Borges Neto, W.; Poppi, R. J. Food Chem.
2019, 293, 323−332.
(33) Gupta, K.; Bhavsar, A.; Sao, A. K. Comput. Biol. Med. 2019, 111,
103328.

(34) Pantazi, X. E.; Moshou, D.; Tamouridou, A. A. Comput.
Electron. Agric. 2019, 156, 96−104.
(35) Máquina, A. D. V.; Sitoe, B. V.; Santana, F. B. d.; Santos, D. Q.;
Neto, W. B. Anal. Lett. 2021, 54, 790.
(36) Mazivila, S. J.; Páscoa, R. N. M. J.; Castro, R. C.; Ribeiro, D. S.
M.; Santos, J. L. M. Talanta 2020, 216 (March), 120937.
(37) Neves, M. D. G.; Poppi, R. J. Talanta 2020, 219, 121338.
(38) Adenan, M. N. H.; Moosa, S.; Muhammad, S. A.; Abrahim, A.;
Jandric, Z.; Islam, M.; Rodionova, O.; Pomerantsev, A.; Perston, B.;
Cannavan, A.; Kelly, S. D.; Othman, Z.; Abdullah Salim, N. A.; Sharif,
Z.; Ismail, F. Forensic Chem. 2020, 17, 100197.
(39) Chamberlain, C. A.; Hatch, M.; Garrett, T. J. Metabolites 2021,
11 (5), 308.
(40) Chamberlain, C. A.; Rubio, V. Y.; Garrett, T. J. Anal. Chem.
2019, 91 (8), 4964−4968.
(41) He, L.; Diedrich, J.; Chu, Y.-Y.; Yates, J. R. Anal. Chem. 2015,
87 (22), 11361−11367.
(42) Pluskal, T.; Castillo, S.; Villar-Briones, A.; Oresǐc,̌ M. BMC
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